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The basilar artery is one of the three vessels providing the blood supply to the human 
brain. It arises from the confluence of the two vertebral arteries. In fact, it is the 
only artery of this size in the human body arising from a confluence instead of a 
bifurcation. Earlier work, concerning flow computations in simplified models of the 
basilar artery, has demonstrated that a junction causes distinctive flow phenomena. 
This paper presents three-dimensional finite-element computations of steady viscous 
flow in a rigid symmetrical junction geometry representing the anatomical situation 
in a more realistic way. The geometry consists of two round tubes merging into a 
single round outlet tube. The Reynolds number for the basilar artery ranges from 
200 to 600, and both symmetrical and asymmetrical inflow from the two inlet tubes 
has been considered. 

Just downstream of the confluence a 'double hump' axial velocity profile is found. 
In the transition zone the flow pattern appears to have a complicated structure. In 
the symmetrical case the axial velocity profile shows a sharp central ridge, whereas in 
the asymmetrical case the highest 'hump' crosses the centreline of the tube. The flow 
has a highly three-dimensional character with secondary velocities easily exceeding 
25% of the mean axial flow velocity. The secondary flow pattern consists of four 
vortices. Under all simulated flow conditions, the inlet length turns out to be much 
larger than the average length of the human basilar artery. 

To validate the computational model, a comparison is made between numerical and 
experimental results for a junction geometry consisting of tubes with a rectangular 
cross-section. The experiments have been performed in a Perspex model with laser 
Doppler velocimetry and dye injection techniques. Good agreement between experi- 
mental and computational results is found. Moreover, all essential flow phenomena 
turn out to be quite similar to those obtained for the circular tube geometry. 

1. Introduction 
Blood flow in large arteries has been a subject of interest for many authors 

(McDonald 1974; Car0 et al. 1978; Pedley 1980). During the last decade both 
numerical and experimental methods were applied to investigate the arterial flow 
phenomena in increased detail. The carotid artery bifurcation, the aortic bifurcation 
and the coronary arteries have attracted most attention, mainly because these arteries 
are often affected with atherosclerosis, by far the most common process responsible 
for cardiovascular and cerebrovascular diseases. 
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FIGURE 1. Diagram of the arteries of the brain in relation to the skeleton. (a )  Right common carotid 
artery. ( b )  Right internal carotid artery (arrow : carotid bifurcation). (c) Right vertebral artery. ( d )  
Basilar artery. 

Essentially, the arterial tree is a branching system. The basilar artery is the largest 
artery arising from a confluence. It has a length of approximately 35 mm and an 
internal diameter of 3-4 mm. Together with the two internal carotid arteries, the 
basilar artery is responsible for the blood supply to the human brain. Figure 1 shows 
a diagram of these arteries in relation to the skeleton. At the entrance of the basilar 
artery the flows from the two vertebral arteries merge. The basilar artery and the 
internal carotid arteries discharge into the circle of Willis, an arterial network at the 
base of the brain. From this circle of Willis, six cerebral arteries distribute the blood 
to various parts of the brain. 

Up to now, little attention has been paid to flow phenomena in an arterial con- 
fluence. One of the first studies concerning the flow in the basilar artery was made 
by McDonald & Potter (1951). In an elegant experiment, they exposed the vertebral 
arteries and the basilar artery of anaesthetized rabbits, introduced ink in one of the 
vertebral arteries and made a film of this in uioo flow visualization. They noted that, 
under symmetrical flow conditions, the ink remained on its own side and drained 
into the branches of the basilar artery on that side exclusively. Schroter & Sudlow 
(1969) did flow experiments in a symmetric model of a human bronchial bifurcation. 
They measured velocity profiles with hot-wire anemometry and visualized the struc- 
ture of the secondary velocity field with smoke during inspiratory and expiratory air 
flow. The latter is comparable with our flow conditions. In those days only axial 
flow velocities could be measured and no sufficiently accurate numerical computa- 
tions could be performed. Therefore, no quantitative information on the strength 
of the secondary flow field, nor on the distribution of the wall shear stress and the 
pressure could be obtained. Some laser Doppler anemometer measurements in a 



Merging flows in an arterial confluence 121 

vertebro-basilar junction model were performed by Hayashi et al. (1992). However, 
the spatial resolution as well as the intervals along the basilar part of the model were 
insufficient to obtain detailed quantitative information about the flow patterns in the 
basilar artery. To the authors’ knowledge, the flow in models of the basilar artery 
was computed for the first time only recently (Krijger, Hillen & Hoogstraten 1989, 
1991; Krijger et al. 1990). They computed the flow velocities in simplified, mostly 
two-dimensional models of the vertebro-basilar junction. This work demonstrated 
that a junction causes distinctive flow phenomena. Subsequent computations of flow 
velocities in three-dimensional junction models consisting of channels of rectangular 
cross-section have shown that, analogous to the branching flow in a bifurcation, the 
merging flow in a confluence is characterized by the presence of a strong secondary 
flow field (Krijger et al. 1992). 

The aim of the present study is to obtain a proper description of the flow phenomena 
in a geometrically realistic model of the basilar artery. The dimensions of the 
model are based on a morphological study of 85 human vertebro-basilar specimens 
originating from formalin-fixed dissecting room material. Although a wide variation 
of most geometrical parameters was found, it is impossible to study the influences 
of all of them at the same time. So we considered a standardized model geometry 
with equal diameters for both inlet channels, a biologically realistic ratio of inlet and 
outlet diameters, an average angle of confluence and a long and straight outlet channel 
without a bifurcation at the end, and studied the influence of different flow rates and 
inflow ratios. Furthermore, hemodynamical simplifications are used. Steady flow of 
a Newtonian fluid is considered in a rigid model, neglecting pulsatility, rheological 
blood characteristics and wall distensibility. 

The computational model has been validated by hydrodynamical experiments in a 
Perspex model under various flow conditions using laser Doppler velocimetry. For 
this purpose, the definition of the geometry in the creation of both the numerical and 
the experimental model has to be very precise and the computational region and the 
Perspex model must be identical. Therefore, a model with rectangular channel cross- 
sections was chosen. A more qualitative validation is also performed by comparing 
the results of dye experiments with computed streamlines. 

2. The computational model 
The physiological situation has been simulated by computing steady flow of an 

incompressible Newtonian viscous fluid through a rigid junction model. The geometry 
and dimensions of this model are presented in figure 2. The model consists of two 
identical circular cylinders A and B (the inlet tubes, representing the vertebral arteries), 
connected with the circular cylinder D (the outlet tube, representing the basilar artery) 
by the junction region C. The axes of the cylinders lie in one plane and the geometry 
possesses two symmetry planes. The x,y,z-coordinate system has its origin at the 
junction apex and is defined as indicated in figure 2. The ratio between the total 
cross-sectional area of the two inlet tubes and the cross-sectional area of the outlet 
tube, the branching ratio, is equal to 1.2. 

In the flow region extending from the two inflow planes to the cross-section 
z = 25 mm of the outlet tube the governing Navier-Stokes equations have been 
solved numerically by use of the the software package Sepran (Segal 1993), a finite- 
element programme that is able to compute accurately complicated three-dimensional 
flows. The finite-element method implemented in Sepran makes use of a Galerkin 
discretization approach which leads to a set of nonlinear algebraic equations (Cuvelier, 
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FIGURE 2. (a ,b )  Definition sketches. (c) Finite element mesh. Part of the mesh has been removed to 
show the finite-element discretization. 

Segal & Van Steenhoven 1986; Van de Vosse et al. 1989). The discretized momentum 
equation becomes 

and the continuity equation in discretized form reads 
{S + N(u)}u + LTp = b, 

Lu = 0. 

In these equations u denotes the column vector of n velocity unknowns in the nodal 
points for the velocity, p the column vector of m pressure unknowns in the nodal 
points for the pressure, S the n x n diffusion matrix, N(u)  the n x n convection matrix, 
L the m x n divergence matrix and b the n x 1 vector arising from the boundary 
conditions. This set of equations can be solved iteratively by solving at each step a 
linearized set. However, since a direct method is used for the solution of the linearized 
equations, this would result in a very time-consuming algorithm. The reason for this 
is that p does not occur in the continuity equation, which leads to a number of zero 
elements on the main diagonal of the coefficient matrix of the linearized equations, 
necessitating an expensive partial pivoting procedure. For that reason, a penalty 
function method has been implemented (Cuvelier et al. 1986) in which the continuity 
equation is replaced by 

LU = &Mp, 
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where E is a very small penalty parameter and M is an m x m orthogonal projection 
matrix (the pressure matrix). The number of unknowns is now reduced from n + m 
to n by elimination of p from the momentum equation, yielding a single equation for 
the vector u: 

(S + N(u))u + &-'LTM-*LU = b. 

This equation is conveniently solved by iteration. In each iteration step the linearized 
equation, obtained by use of the Newton-Raphson method, is solved by a direct 
method: asymmetric LU factorization without pivoting. Since the small value of the 
penalty parameter results in a poorly conditioned coefficient matrix, iterative solution 
methods are difficult to apply here. 

The finite-element mesh is shown in figure 2(c). It is composed of 27-noded 
isoparametric hexahedral elements, each with 81 unknowns for the velocity and 4 for 
the pressure (Van de Vosse et al. 1989). The four pressure unknowns are the pressure 
itself and its three spatial derivatives, all of them defined at the centre of the element. 
The velocity components are approximated continuously by quadratic interpolation 
functions, whereas the pressure is interpolated linearly in each element and varies 
discontinuously over the element boundaries. The mesh has been constructed from 
previous meshes by gradual refinement in regions where wiggles in the numerical 
solution occurred until a smooth solution was obtained. Since wiggles were not 
suppressed artificially, a solution can usually be relied upon once the wiggles have 
been reduced. The smallest elements are located in the junction region C, where the 
most complicated flow phenomena occur. 

In the case of symmetrical inflow from the two inlet tubes, the flow pattern possesses 
two symmetry planes, the (x,z)- and the (y,z)-plane, and in the case of asymmetrical 
inflow only one symmetry plane remains, the ( y ,  2)-plane. These symmetries have 
been used to reduce the computational work by solving one quarter or one half 
of the complete problem using appropriate symmetry boundary conditions. In the 
symmetric flow case a mesh with 576 elements and 5635 nodes has been used. In the 
asymmetric flow case the mesh contained 1152 elements and 10841 nodes. It has been 
assumed that the flow will remain symmetric with respect to the above-mentioned 
planes for all cases considered in this work. This assumption is confirmed by the 
experimental results described in the section on the validation of the computational 
model. 

At the inflow planes fully developed (parabolic) flow profiles were prescribed. The 
no-slip boundary condition (zero velocity) was imposed at the walls. At the outlet 
the normal and both tangential stresses were set to zero. Although this stress-free 
boundary condition is not completely compatible with fully developed flow, it allows 
the fluid to leave the computational domain with very little upstream influence. 
Numerical experiments with different locations of the outflow boundary have shown 
that the computed solution is affected only over a distance of one element upstream 
by the imposition of this boundary condition. 

The flow field in the outlet tube downstream from z = 19 mm, where the flow 
development has become slow, has been computed with a different method in which 
use is made of the fact that some terms in the Navier-Stokes equations are very small 
and can be neglected. Denoting the x, y, z-components of the velocity by u, D and w, 
respectively, the streamwise diffusion terms uzz, 0,: and w,, are deleted. Furthermore, 
in the z-momentum equation the pressure is replaced by its average over the cross- 
section. This gives the 'parabolized' Navier-Stokes equations which can be solved as 
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FIGURE 3. Axial velocity profiles in the two planes of symmetry, the (y ,z ) -  and (x,z)-planes, 
indicated in figure 2. Results for symmetrical inflow and Reynolds numbers 200 (dashed lines) 
and 600 (continuous lines). All velocities have been made dimensionless by scaling with the 
corresponding mean axial velocity W. The numbers indicate the downstream distance z. The 
distances z downstream from the apex are to scale only for z < 10 mm. 

a parabolic set with z taking over the role of ‘time’, using the computed finite-element 
solution at z = 19 mm as an inflow boundary condition. By taking this inflow profile 
from the finite-element solution at a cross-section located somewhat upstream from 
the finite-element outflow plane, any undesirable effect of the stress-free boundary 
condition is avoided. The procedure marches stepwise in the positive z-direction, 
each time solving a two-dimensional problem by means of an AD1 finite-difference 
method, until the solution has come sufficiently close to the ultimate fully developed 
state. This approach, of which full details can be found in Krijger et ul. (1989, 1992), 
leads to a considerable advantage in computing time. 

The computations were done for several values of the Reynolds number, ranging 
up to 600. The Reynolds number Re is defined by Re = W d / v ,  where W is the 
cross-sectional average of the axial velocity in the outlet tube, d is the diameter of 
the outlet tube, and v is the kinematic viscosity. Measurements with the transcranial 
Doppler technique have shown that the time-averaged cross-sectional mean of the 
axial velocity in the basilar artery is approximately 0.45 m s-* (Krijger et al. 1991; 
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FIGURE 4. Three-dimensional plots of axial velocity profiles for symmetrical inflow at Re = 600. 

Ravensbergen et al. 1995). With blood viscosity v = 3 x lop6 m's-' this implies that 
Reynolds numbers ranging from 200 to 600 are physiologically realistic. 

3. Results 
Results will be given for Re = 200 and 600, for both symmetrical inflow (inflow 

ratio y = 1) and asymmetrical inflow (inflow ratio y = 2). First the case of symmetrical 
inflow is presented. 
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FIGURE 5. Vector plots of the secondary velocities for symmetrical inflow at Re = 200 (a) and 600 
( b )  at several downstream stations. The mean axial velocity W is indicated by the arrow underneath 
each column, and the downstream distance z is indicated by the numbers on the plots. 

3.1. Symmetrical infow 
Profiles of the axial flow velocity, i.e. the z-component w, in the two planes of 
symmetry ( y ,  z-plane and x, z-plane) at several downstream stations are shown in 
figure 3. The dashed lines show the results for Re = 200. In the plane of the 
confluence ( y ,  z-plane) a 'double hump' velocity profile appears in the junction region. 
The two humps merge downstream in the outlet tube and form a profile with one 
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FIGURE 6. Pressure contours for symmetrical inflow at Re = 600. The pressure has been 
nondimensionalized with the reference pressure pW2. 

central maximum from z = 10 mm onwards. From z = 80 mm onwards, the flow 
cannot be distinguished from fully developed flow. Additional phenomena can be 
observed in the plane perpendicular to the confluence (x, z-plane). Initially the velocity 
profile is rather flat. Far downstream it develops towards a profile with one maximum. 
In the entrance region of the outlet tube the velocity gradients near the walls are 
large. The continuous lines show the results for Re = 600. The transition towards full 
development is much slower than for Re = 200. It is noteworthy that in the junction 
region the flow profiles for Re = 200 and 600 show only minor differences, whereas 
farther downstream noticeable differences occur. For Re = 600 the flow profiles in 
the (y,z)-plane form a pronounced central peak. In the (x,z)-plane the initially flat 
profile changes into a profile with two maxima which disappear between z = 80 and 
z = 120 mm. Three-dimensional plots of complete axial velocity profiles are shown in 
figure 4 for the case Re = 600. The two initial humps collide centrally. Next a sharp 
ridge develops, which remains visible over a considerable downstream distance. 

For a full understanding of the flow phenomena, knowledge of the structure of 
the secondary flow field and the pressure distribution is indispensible. In figure 5, 
vector plots of the secondary velocities, i.e. the transverse components u and u, 
for Re = 200 and 600 are shown at five positions between 2 and 20 mm distance 
from the apex. The secondary flow field consists of four vortices. The strength of 
these vortices decreases in the downstream direction and the location of their centres 
changes slightly. The vortices persist very far downstream. It is easy to see that the 
strength of the secondary flow field varies with the Reynolds number. The effect of 
the secondary flow field is that the fluid flows in four helical coils and each coil rotates 
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FIGURE 7. Wall shear stress contours for symmetrical inflow at Re = 600. The wall shear stress has 
been nondimensionalized by the standard wall shear stress (see text). 

in the opposite direction to neighbouring coils. Figure 6 shows the pressure contours 
in the two planes of symmetry for symmetrical inflow at Re = 600. A pressure 
maximum is located centrally in the junction region, just downstream from the apex. 
Hence, in both planes of symmetry, large transverse pressure gradients exist in a small 
region downstream of the apex. In the plane of the confluence the transverse pressure 
gradient forces the flow from the inlet tubes to deflect. In the plane perpendicular 
to the confluence, the pressure gradient causes the fluid to flow outwardly in both 
directions from the centreline, thus compensating for the fluid being driven inwardly 
from both sides in the plane of the confluence by the centrifugal effect. As a result, 
the four vortices in the secondary flow field are created. 

The distribution of the wall shear stress for Re = 600 is depicted in figure 7. 
The wall shear stress is defined as the length of the wall shear stress vector that is 
computed from the derivatives of all three velocity components. It has been made 
dimensionless by scaling with the standard wall shear stress, i.e. the wall shear stress 
for Poiseuille flow with the same flux in the outlet channel. As can be seen in figure 
7, regions of low wall shear stress can be found around the apex and on both outer 
walls in the confluence region. High wall shear stresses occur on the wall in the plane 
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FIGURE 8. Axial velocity profiles in the two planes of symmetry, the (y,z)- and (x,z)-planes, 
indicated in figure 2. Results for asymmetrical inflow (with y = 2) and Reynolds numbers 200 
(dashed lines) and 600 (continuous lines). All velocities have been made dimensionless by scaling 
with the corresponding mean axial velocity W. The numbers indicate the downstream distance z. 
The distances z downstream from the apex are to scale only for z < 10 mm. 

perpendicular to the confluence plane, coinciding with the regions with steep axial 
velocity gradients visible in figure 3. 

3.2. Asymmet r ica 1 inflow 
Figure 8 shows the flow velocity profiles resulting from asymmetrical inflow with flow 
ratio y = 2, i.e. the flux in one inlet tube is twice the flux in the other. The dashed 
lines show the results for Re = 200. In the plane of the confluence (y,z-plane) the 
'double hump' velocity profile in the junction region possesses peaks of unequal height. 
Farther downstream the highest peak crosses the centreline and it is located on the 
opposite side from z = 10 mm onwards. The asymmetry disappears slowly. The flow 
phenomena visible in the plane perpendicular to the confluence (x, z-plane) resemble 
those occurring in the case of symmetrical inflow at Re = 600. The continuous lines 
show the results for asymmetric inflow at Re = 600. Initially, in the junction region, 
the profiles are quite similar to those for Re = 200, but farther downstream marked 
differences develop. For Re = 600 the transition zone is much longer and a fully 
developed flow velocity profile has not yet established itself at z = 120 mm. Note 
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F I G ~ E  9. Three-dimensional plots of axial velocity profiles for asymmetrical inflow (with y = 2) at 
Re = 600. 

that, up to z = 15 mm in the (y,z)-plane, the trajectory of the highest peak appears 
to be almost independent of the Reynolds number. Figure 9 shows three-dimensional 
plots of the axial velocities at Re = 600. In the junction region the highest peak 
dominates the other peak, whereupon a C-shaped maximum with a remarkable sharp 
ridge develops. The cavity within the ‘C’ fills up slowly as the flow approaches full 
development. 
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FIGURE 10. Vector plots of the secondary velocities for asymmetrical inflow (with y = 2) at Re = 200 
(a) and 600 (b )  at several downstream stations. The mean axial velocity W is indicated by the arrow 
underneath each column, and the downstream distance z is indicated by the numbers on the plots. 

The secondary velocities for asymmetrical inflow at Re = 200 and 600 are presented 
in figure 10 for five positions between 2 and 20 mm distance from the apex. Again 
four vortices are found. However, the two vortices on the side of the largest inflow are 
stronger than the other two. The strongest vortices occupy a growing area and decay 
more slowly. Figure 11 shows the pressure contours for the case Re = 600. As in the 
symmetrical flow case, a region of high pressure is located just downstream from the 
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FIGURE 1 1 .  Pressure contours for asymmetrical inflow (with y = 2) at Re = 600. The pressure has 
been nondimensionalized with the reference pressure p W’. 

apex. The transverse pressure gradients in the plane of the confluence are unequal 
now. Notwithstanding the fact that the pressure gradient is larger on the right-hand 
side, the flow on this side, which possesses the highest velocities, is less deflected than 
the flow on the other side. As a result, the highest velocities cross the centreline of the 
outlet tube. Furthermore, a local pressure maximum is observed downstream near the 
right-hand wall of the outlet tube. However, a detailed examination of the velocities 
in this region did not reveal any local backflow phenomena. 

The distribution of the wall shear stress for asymmetrical inflow at Re = 600 is 
shown in figure 12. Near the apex and on both lateral walls a region of low wall shear 
stress is present. On the lateral wall on the side of the largest inflow the region of low 
wall shear stress is much larger (and the stress values are much lower) than on the 
opposite wall. High wall shear stresses occur on the wall in the plane perpendicular 
to the confluence. 

4. Validation of the computational model 
4.1. Description of the validation model 

The computational model is validated by hydrodynamical experiments under steady 
flow conditions in a symmetrical model consisting of tubes with a rectangular cross- 
section. Figures 13(a) and 13(b) show the model geometry, which is fully characterized 
by the branching angle, the height and width of the cross-sections and the radius 
of curvature of the tube outer walls at the junction. These characteristics of the 
validation model are comparable with those of the model with the circular tubes. 
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FIGURE 12. Two views of the wall shear stress contours for asymmetrical inflow (with y = 2) at  
Re = 600. The wall shear stress has been nondimensionalized by the standard wall shear stress (see 
text). 

Rectangular tubes have the advantage that the manufacturing of a Perspex model is 
less complicated and that the geometries of the experimental and the computational 
model can be made identical. Also, the measurements with the laser Doppler tech- 
nique are not compromised by refraction problems at the wall of the model. For 
the validation, the axial velocity component (w) is measured using laser Doppler 
velocimetry, and compared with computed velocities in the two symmetry planes at 
locations where the flow is most complicated. Symmetrical inflow as well as asym- 
metrical inflow are investigated, both for several Reynolds numbers. Furthermore, 
the results of dye experiments are compared with the computed streamlines. 

In the experimental Perspex model the vertebral arteries are represented by two 
identical tubes with rectangular cross-section of 3 x 4 mm and a length of 70 mm. 
The inlet tubes meet symmetrically with an angle of 63" and form a single outlet tube 
with a cross-section of 4 x 5 mm and a length of 200 mm, representing the basilar 
artery. The ratio of the total cross-sectional luminal area of the vertebral arteries 
and of the basilar artery is 1.2. In the junction region the outer walls are curved, the 
circular arcs having a radius of 1.5 mm. The computational mesh used is depicted 
in figure 13(c), and the same numerical solution technique has been used as for the 
circular tube model. 
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FIGURE 13. (a, b) Definition sketches of the validation model. (c) Finite-element discretization of 
the validation model. 

4.2. The experimental set-up 
The Perspex model was mounted on a support allowing three degrees of freedom 
in translation. The measurements were made at several locations in the outlet tube. 
Most measurements were made in the region were the flow was known from previous 
research to be very complicated. A steady flow was provided with water as the 
fluid. Two flowmeters (Brooks SHO-RATE purgemeters 1357 with needle valves and 
with an accuracy higher than 97%) were placed in the two supply hoses to control 
the incoming flow rates. The temperature was kept under control throughout the 
experiments. 

A computer-controlled differential laser Doppler velocimeter was used in a forward 
scattering mode. A helium-neon laser (Optilas LHRR-0100) produced a laser beam 
with 1 = 633 nm at 1 mW. A prism cube beamsplitter and several prisms (CVI) on 
adjustable mounting systems produced two parallel laser beams of equal intensity 
and with optical path lengths which did not exceed the coherence length of the laser. 
A lens focused the laser beams (f = 25 mm) to form an intersecting sampling volume 
that was approximately ellipsoidal with a length of 90 pm and a diameter of 25 pm. 
Within the sampling volume fringes were established by interference. Polystyrene 
microspheres in dilute suspensions were used as laser scattering particles. Light 
scattered by these particles traversing the fringes was collected by a photodetector 
(Spindler & Hoyer E2VUV), amplified and filtered (HP 462A amplifier; Krohnhite 
3100 band-pass filter) and fed into a computer. An AD-converter card digitized 
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the electrical signal and the individual Doppler bursts were selected automatically 
and analysed by a software package which calculated the average velocity of 100 
Doppler bursts for each local velocity measurement (Nijhof, Uijttewaal & Heethaar 
1994). 

In addition, experiments with dye injection were performed to obtain visual infor- 
mation on the flow phenomena. Streamlines were generated at several locations in 
the two inlet tubes by injecting dark blue and dark red ink in the separate tubes. 
Injection was performed through a needle with an internal diameter of 0.05 mm at 
the entrance of the inlet tubes in order to keep the confluence free of disturbances. 

4.3. Comparison of numerical and experimental results 
Measurements and computations were performed for Re = 200, 400 and 600 (based 
on d = 5 mm) with symmetrical inflow (flow ratio y = 1) and asymmetrical inflow 
(flow ratio y = 2). The flow velocities were measured in the two planes of symmetry, 
indicated in figure 13 as the (y,z)-plane and (x,z)-plane. Figure 14 shows the axial 
velocity profiles for symmetric inflow at Re = 400 and asymmetric inflow at Re = 400 
and Re = 600. The circles denote the measured values and the lines the corresponding 
computations. The numerically predicted flow velocities are seen to agree very well 
with the measurements. The same holds for the results not shown here. A minor 
imperfection occurs in figure 14(c) (asymmetric inflow, Re = 600) where the largest 
inflow in the experiment turned out to be not completely developed, whereas in the 
computations fully developed flow at both inlets of the model is always assumed. 
This shortcoming in the experiments arises from the fact that for asymmetric inflow 
at higher Re-values the flow in the inlet tubes depends quite strongly on the way 
the supply hoses are connected to the Perspex model. In particular, owing to the 
set-up of the flow circuit, curves in the flexible supply hoses could not be avoided 
completely. 

The axial velocity profiles shown in figure 14 are essentially the same as those 
for the circular tube model. In addition, the computed secondary flows (not shown 
here) are also very similar to those in the circular tube model. Secondary velocity 
vector plots, computed for an almost identical junction model composed of tubes 
with rectangular cross-section, have been presented by Krijger et al. (1992) for both 
symmetric and asymmetric flow at Re = 250. 

The visualization of streamlines by the dye experiment and the computed stream- 
lines of two of the four helices for Re = 600 is given in figure 15. The computed 
streamlines agree very well with the ink lines. The streamlines swirl slowly in a 
direction corresponding to the four-vortex secondary flow pattern. In the symmetric 
case the fluid remains on its own side, but in the asymmetric case there is an exchange 
of fluid across the plane perpendicular to the plane of the confluence. 

5. Discussion 
Summarizing the main results, it can be concluded that the flow in the vertebro- 

basilar junction model is highly three-dimensional. As a consequence of the deflection 
of the two inlet flows in the junction region a strong secondary flow field is created 
which persists far downstream. The transverse velocities show a distinctive four- 
vortex pattern. No essential differences have been found between the flow phenomena 
occurring in the circular tube model and those in the rectangular tube model. 

In the case of symmetric inflow, the fluid in the vertebro-basilar junction model 
flows in four ‘compartments’ and the fluid in one compartment never mixes with fluid 
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RGURE 14. Computed (lines) and measured (circles) axial velocity profiles in the two planes 
of symmetry, (y,z)- and (x,z)-planes, indicated in figure 13. (a) Results for symmetrical inflow at 
Re = 600. (b)  Results for asymmetrical inflow (with y = 2) at Re = 400. ( c )  Results for asymmetrical 
inflow (with y = 2) at Re = 600. All velocities have been made dimensionless by scaling with the 
corresponding mean axial velocity W. The numbers indicate the downstream distance z. The 
distances z downstream from the apex are to scale only for z < 10 mm. 

from other compartments. This is in accordance with McDonald & Potter (1951), 
who showed experimentally that there was no mixing between the flow from the left 
and the right vertebral arteries in the basilar artery of young rabbits with vertebrals 
of equal diameter. 

Some flow phenomena observed in our work were noted earlier by Schroter & 
Sudlow ( 1969). As already mentioned in the introduction, they studied inspirational 
and expirational air flow in symmetric models of the human respiratory system for 
Reynolds numbers in the same range as used here. In expiration, merging flows occur 
in the airways which are comparable to the flow conditions considered in the present 
paper. The results of Schroter & Sudlow are mainly qualitative, and our study 
provides additional quantitative information (for both symmetric and asymmetric 
inflow) on the three-dimensional flow field, the strength of the secondary flow field, 
the pressure distribution and the distribution of the wall shear stress. Moreover, a 
comparison is made between numerical and experimental results. 

Pedley (1977), referring to the results of Schroter & Sudlow (1969), noticed that 
secondary motions cause the fluid just downstream of the apex, which has a low flow 
velocity, to be swept out away from the plane of the confluence. So, the fluid with the 
highest flow velocity accumulates in the centre, developing a single central maximum 
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FIGURE 15. Comparison between flow visualization with ink lines in the experimental model and 
computed streamlines starting at comparable locations. (a) Symmetric inflow at Re = 600. (b)  
Asymmetric inflow ( y  = 2) at Re = 600. 

in the axial velocity profile. Further downstream the secondary motions also cause 
the fluid in the centre of the model to be swept out away from the confluence plane, 
but as this fluid has the highest velocities, two new maxima develop in the plane 
perpendicular to the confluence. Furthermore, over a considerable distance in the 
outlet tube, the axial velocity profiles remain rather flat. This is apparently due to the 
mixing effect of the complicated pattern of secondary velocities on the axial velocities. 
This explanation of some of the phenomena occurring in merging flows is confirmed 
by the findings reported in the present paper. 

Secondary velocities are often associated with flow in curved tubes, a subject which 
has attracted much attention in the literature (Berger, Talbot & Yao 1983). For fully 
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y = l  y = 2  
Re=200 Re=400 Re=600 Re=200 Re=400 Re=600 

1% 65.84 148.14 225.69 96.56 208.98 31 2.60 
2% 54.38 125.04 191.81 83.77 182.83 273.48 
3% 48.30 111.79 170.44 75.96 166.09 248.39 

TABLE 1. Inlet lengths (mm) with tolerances 1, 2 and 3 YO for the circular tube model. Results for 
symmetrical ( y  = 1) and asymmetrical ( y  = 2) inflow, for Re = 200,400 and 600. 

developed flow in long curved tubes a balance has been reached between centrifugal 
forces (which accelerate the fluid in the transverse direction) and viscous forces (which 
slow down the fluid). The Dean number characterizes this balance and indicates the 
strength of the secondary flow field for fully developed flow in a curved tube. Owing to 
the short and acute bends in the junction model of the present study, the secondary 
flow field cannot develop fully. Therefore, a balance between inertial and viscous 
forces cannot be reached, and the Dean number is not a measure of the strength of 
the secondary flow field. In the present study, the secondary flow velocities appear 
to depend on the magnitude of the transverse pressure gradients. These transverse 
pressure gradients are associated with the change of direction of the flow, which, in 
turn, depends on the angle of confluence, and not on Re. An analogous argument for 
entry flow into a curved tube can be found in Berger et al. (1983). 

It takes a certain length, the inlet length, for fully developed Poiseuille flow to 
establish itself in the outlet tube. Strictly speaking, since the fully developed state is 
reached asymptotically, this length is infinite. For practical purposes it is convenient 
to define the inlet length as the length needed for the flow to become close to the 
fully developed state. In the classical entry flow problem, in which the fluid enters a 
straight tube with a flat axial velocity profile, an often applied criterion for the inlet 
length is that the centreline velocity has reached a value equal to 99% of the fully 
developed value. In the present context a more general criterion is needed. The inlet 
length L is defined here as the smallest value of the axial coordinate z for which the 
maximum value over the cross-section of the difference I w(x, y ,  z )  - w(x,  y, C O ) ~  is equal 
to n% of the fully developed centerline velocity w(O,O,ao). This definition has been 
introduced by Krijger et al. (1992). For the classical entry flow problem it reduces to 
the classical one. The results presented in table 1 show that L in the asymmetric case 
is larger than in the symmetric case. Moreover, in both cases, L exceeds the length of 
the real basilar artery considerably, which means that the flow branching at the end 
of the basilar artery will be heavily influenced by the secondary flow effects created 
by the vertebro-basilar junction. The different values of L, computed for n = 1, 2 or 
3, illustrate the rate at which the flow reaches full development. 

Provided the Reynolds number is sufficiently large, the inlet length is almost 
proportional to Re: L /d  = pRe. For the classical axisymmetric entry flow problem 
the most accurate value of the constant of proportionality p, based on a 99% 
tolerance (n = l), is 0.056. This value was computed by Friedman, Gillis & Liron 
(1968), who solved the full Navier-Stokes equations. For symmetric junction flow 
(y = 1) in the circular tube model the value p = 0.075 has been found here, and 
for asymmetric flow (with y = 2) p becomes 0.104. Values of j? have also been 
computed for the rectangular tube model. Using the hydraulic diameter (d = 4.444 
mm) in the definition of Re, the result is p = 0.075 for the symmetric flow case and 
f l  = 0.121 for the asymmetric case with y = 2. It can be concluded that for symmetric 
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FIGURE 16. Cross-sectional mean of the secondary velocities in the outlet channel (expressed as a 
percentage of the mean axial velocity) as a function of the distance z from the apex for symmetrical 
inflow at Re = 200(0), 400(#) and 600(*) on a logarithmic scale. The dashed lines indicate 
the results for the rectangular tube model and the continuous lines those for the circular tube 
model. 

inflow the inlet length in the basilar artery is somewhat larger than the classical inlet 
length. However, for asymmetric flow the classical value underestimates the inlet 
length considerably. 

The good agreement between measured and computed velocities for a range of 
flows in the rectangular tube model justifies the belief that the computational results 
for flows in the circular tube model are reliable. Moreover, the flow phenomena in 
both types of junction model turn out to be essentially the same. Apparently, the 
corner regions of nearly stagnant flow in the rectangular tube model do not contribute 
much to the overall flow phenomena. In addition to the agreement between the inlet 
parameters /3 noted in the preceding paragraph, another quantitative comparison 
between the results from the two models can be made by comparing the cross- 
sectional mean of the secondary velocities. Figure 16 shows the mean secondary 
velocities in the outlet tube (on a logarithmic scale, and expressed as a percentage of 
the mean axial velocity) as a function of the distance from the apex for symmetrical 
inflow at various values of Re. The continuous lines show the results for the circular 
tube model and the dashed lines those for the rectangular tube model. Note that 
the graphs start at different axial positions for each model, since the length of the 
junction region is larger for the circular tube model compared with the rectangular 
tube model. As can be seen, the initial mean secondary velocities as well as the decay 
rates differ only slightly between the two models. 

Our experiments and computations were based on some assumptions: (i) rigid tube 
walls, (ii) Newtonian fluid behaviour and (iii) steady flow. Although vessel compliance 
is important with regard to wave propagation (McDonald 1974; Pedley 1980), its 
effect on the global flow field will be very small. In the real basilar artery relative 
diameter changes during the cardiac cycle are less than 5% (Ku & Liepsch 1986). 
Hence, the flow will be influenced only close to the tube wall, with probably an effect 
on the magnitude of the wall shear stress. The assumption that blood behaves as 
a Newtonian fluid is a very common one when considering blood flow in the larger 
arteries (Xu, Collins & Jones 1992). The particles in the blood, i.e. the blood cells, as 
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well as the particles in the experimental fluid, i.e. the polystyrene microspheres, have 
much smaller dimensions than the vessels or the tubes in the model. The difference is 
about t hreehundred-fold. 

The assumption of steady flow is not without drawbacks since it ignores the 
important effects of flow acceleration and deceleration. A representative parameter 
for the influence of the frequency on the balance between inertial and viscous forces 
is the Womersley parameter CY = R ( 2 n f / v ) ’ / * .  This parameter is determined by the 
radius ( R )  of the vessel, the frequency (f) and the kinematic viscosity ( v ) .  For 
the flow in the basilar artery the Womersley parameter is about 2.1 which is small 
enough to assume that with respect to the frequency the effects of unsteadiness will be 
moderately small. Furthermore, the amplitude of the flow fluctuation in the human 
basilar artery is not very large. For the cerebral circulation this fluctuation is often 
expressed by the pulsatility index after Gosling, which is defined as the difference 
between the maximum and minimum velocities divided by the mean flow velocity 
over the cardiac cycle. For the basilar artery this pulsatility index is less than one 
(Ravensbergen et al. 1995), which is relatively small. In previous work (Krijger 
et al. 1991) a two-dimensional model of pulsatile flow in the basilar artery led to 
results which were largely similar to those for the steady case. The largest differences 
occurred during the phase of strongly decelerating flow. 

It is generally accepted that hemodynamic forces are associated with atherogenesis. 
There are various reasons to think that the wall shear stress is an important factor 
in the development of atherosclerosis. Anatomical data suggest that the sites on the 
vessel walls exposed to low or oscillating wall shear stress are highly susceptible to 
atherosclerosis. The basilar artery is often affected with this disease. A location with a 
striking amount of atherosclerotic plaques is the apex. Of the 85 preparations studied 
morphologically, 43 had an atherosclerotic plaque at the apex, by far the highest 
percentage in comparison with all other locations. As can be seen in figures 7 and 
12, the wall shear stress is rather low at the apex of the vertebro-basilar junction, for 
symmetrical as well as for asymmetrical inflow. In contrast, the apex of a bifurcation, 
which is known to be a location with relatively high wall shear stresses, is often 
spared (Kjearness et al. 1981; Zarins et al. 1983; Ku et al. 1985). 

This research was supported by the Netherlands Organization for Scientific 
Research, NWO. 
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